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ABSTRACT

Methods founded in concepts of self similarity are explored for fault
studies relative to self similar laws of order for stream systems. This
approach has been applied to the ordering relations for a specific fault
system in central Nevada (N. Reese River Valley Scarps) and to general
arrays of data for statistical relations between fault numbers and
lengths in the conterminous United States and the Los Angeles Area.
Comparisons with earthquake magnitude-frequency data are given in terms
of relations between fault rupture lengths, fault order, earthquake
magnitudes and seismic moments. Insofar as we can determine, the results
are entirely consistent with a direct parallel between laws of fault
order and laws of stream order, including: (1) Law of Fault Numbers; (2)
Law of Fault Lengths; (3) Law of Fault Source Areas; (4) Law of
Mechanical Energy Gradients; (5) Law of Mecnanical Energy Flux. These
conclusions are underscored by recent advances in self-similar models of
earthquake mechanisms stemming from Mandelbrot's (1977) concepts of
fractal sets, epitomized in studies by Kagan and Knopoff (1977, 1978,
1980, 1981) and by Andrews (1980,1981).



INTRODUCTION

We recently completed a compilation of statistical data representing
fault lengths by age and region within the conterminous United States for
movements within the latest 15 million years (Shaw and others, 1981)
based on the map compiled by Howard and others (1978); we used analogous
data for the Los Angeles area (Ziony and others, 1974) as a comparative
set at a much larger map scale (factor of 20X). While doing that study
we became impressed by resemblances between our data and data
representing relations between numbers and lengths of rivers and streams
as derived empirically by Horton (1945) and modified by Strahler (1952).
They expressed these relations in terms of what have been called Laws of
Stream Ordering, in which there are revealed regular systematic relations
among the numerical progressions of length, bifurcation ratios, slopes,
and corresponding drainage basin areas in a drainage network.

The purpose of this paper is to draw a parallel between methods for
stream ordering and methods for ordering fault data, and to direct the
results toward new perspectives concerning the geologic distribution and
magnitude ranges for earthquakes in the U.S. We find two specific
logarithmic relations between fault order (that is, fault sets
representing self similar number sets generated in the same manner as
stream orders) and earthquake magnitude relative to fault length,
depending on the criteria chosen for correlating magnitudes and lengths.

Overall in the United States, the average length ratio for faulting,
calibrated according to stream orders, is R ~3. This means that
earthquake magnitude is proportional to faulting order divided by 2 when
faulting orders are defined in the same way as stream orders and when
magnitude is defined according to regressions on length (Mark, 1977; Mark
and Bonilla, 1977); on the other hand, if length is determined from a
calibration of length versus magnitude, magnitude and order are nearly
the same. These results show that self similarity in faulting networks
directly parallels self similarity in drainage networks. We do not,
however, have an explanation for the seemingly systematic difference in
logarithmic base relative to the distinctions in length-magnitude
relations. It may be an artifact of the statistical scatter in the
length-magnitude data, but the distinctions are suspiciously systematic
(see Figure 14).

Our results suggest a new basis for investigating relations between
rupture lengths and earthquake magnitudes, and new insights concerning
regional source areas (and, presumably, source volumes) in relation to
fault lengths and the flow of earthquake energy (flow of mechanical work)
in the earth's crust. We also think this approach offers an opportunity
for systematic developments in methods of earthquake forecasting based on
concepts of self similar fault branching. We see direct parallels with
{ggg;etical studies by Kagan and Knopoff (1981) and Andrews (1980,



THE HORTON AND STRAHLER METHODS OF STREAM ORDERING

The methods used in counting stream segments by Horton (1945) and
Strahler (1952) differ somewhat in regard to the convention for
classifying stream segments of similar configuration. Both Horton and
Strahler counted "unbranched fingertip tributaries" as order 1. Each
successively higher order by the Horton method, however, modifies this
relation to invoke a trunk stream that remains of that order from its
headwater to the next higher order trunk stream. Two effects of this
choice are: (a) there is some subjectivity in choosing which branch is
the trunk stream, and (b) the total number of segments is smaller than it
would be if the order were always unity for every headwater segment. The
different methods are derived and discussed in detail by Shreve (1966);
Figure 1 summarizes the alternatives and gives histograms and regressions
for total counts of stream segments. Figure 2 gives the respective
relations among stream order, numbers, and mean lengths based on the
classification in Figure 1A. The bifurcation ratios in Figure 2 range
from 3 to 5, with an average of 4.6 given by the slope in Figure 2B(3);
see Table 2.

Strahler (1971) summarizes the laws of order for stream systems as
follows (our headings):

Law of Stream Numbers;

There follows from observation a law of stream numbers: The
numbers of stream segments of successively lower orders in a given
basin tend to form a geometric progression, commencing with a single
trunk segment of the highest order and increasing according to a
constant bifurcation ratio. For example, given a bifurcation ratio
of exactly 3 and a trunk-stream segment of the sixth order, the
numbers of segments within the system will be 1, 3, 9, 27, 81, and
243 (page 610?

Law of Stream Lengths;

The mean Tength of each order is converted into cumulative mean
length, by adding the mean length of each order to the sum of those
of lower orders.

Extensive observations of drainage networks show that the
cumulative length ratio tends to remain constant within a given
drainage system. It is therefore possible to state a law of stream
lengths: The cumulative mean lengths of stream segments of
successively higher orders tend to form a geometric progression
beginning with the cumulative mean length of the first-order segments
g?glgncreasing according to the (constant) length ratio (page

Law of Basin Areas;
The mean basin areas of successive stream orders tend to
form a geometric series beginning with mean area of the first-order
basins and increasing according to a constant area ratio (page 612).

IWe notice that there is a discrepancy between the cumulative mean
lengths and the ratios employed in Table 3 (from Strahler, 1971, Table
34.3, p. 611); the ratios actually tabulated apparently were obtained
from the mean lengths rather than the cumulative mean lengths.



Law of Energy Gradients2/;

Un the basis of extensive data on channel slopes, a law of
stream slopes has been formulated: The mean slopes of stream segments
of successively higher orders in a given basin tend to form an
inverse geometric series, decreasing according to a constant slope
ratio (page 613).

Law of Energy Fluxd/;

When the mean annual discharge, as calculated from stream
gauge records, is plotted against the total area of watershgd lytng.
above that gauge, a simple relationship of discharge to basin area is
revealed. Although the data are plotted on a dquble-logar1thm1c
graph, the straight line of best fit is so 1nc11qed that yhe )
discharge increases in direct proportion to the increase 1n drainage
area. Once the existing relationship has been established for a
given watershed, it is possible to make good estimates of the mean
annual discharge at any given point on a trunk stream by mere}y
measuring the watershed area lying above that point (page 6l3;
italics added)

The various laws of stream order obviously are systematically
interrelated. It is evident that if similar, or even analogous, laws of
order exist for faulting networks, the potential increase in our
abilities to forecast earthquakes may be substantial. We suggest,
therefore, that a comparative anatomy of river drainage and faulting
networks be created in as great detail as field data will allow. The
present paper introduces the idea and draws some tentative correlations
for further developments in the field.

2We use this phrase to draw attention to possible analogies with
mechanical energy flow in faulting and earthquakes. Gradients are
steeper in smaller streams for the same net flow because of higher
friction losses. Analogously, for the same net work rate across a
Control surface, the gradient of stress in faulting decreases from the
smaller to larger branches of the system; and, of course, frictional
dissipation is higher per unit area on the smaller branches.

3This relation is a corollary of the Law of Energy Gradients for stead
state systems. That is, if the proportions of stream or fault branches
are constant, and there is an areal distribution that maintains a
constant net discharge across any section normal to the flow, then that
discharge is directly proportional to the total available source area for
each segment of stream or fault. This appears to state that the net flux
of change in potential energy per unit time is, on the average, constant
throughout the system. For faults, this means that the net energy flux
recorded by the slip on the largest branches is made available by being
“collected" and passed along by all the smaller branches relative to the
Crustal volume sampled by the system.




COMPARATIVE LENGTH FREQUENCIES, STREAMS AND FAULTS

On first consideration, it would seem that faults ought to represent
geometrically different phenomena than stream networks. They involve
three-dimensional sets of planes that intersect and offset one another in
diverse ways over geologically long periods of time. It is probably for
this reason that self-similar patterns of branching networks have not
been noticed conspicuously, nor have they been generally sought.

The body of data we have compiled, however, is of such wide scope and
generality that the complexities of detailed histories have been
overwhelmed by patterns that demonstrate common similarities independent
of geologic setting, rock types and styles and orientation of faulting

Shaw and others, 1981; also Raleigh and Evernden, 1981, p. 173-176).
his "sameness" is the first principle of comparative anatomy,
corresponding to the observations made by Horton (1945) that the law of
stream numbers is relatively insensitive to isotropy and rock types. As
paraphrased by Shreve (1966, page 18):

Since 1945 investigators working in many different areas have

confirmed this insensitivity, showing that both the geometric-series

form and the bifurcation ratio are characterized by considerable
independence of the detailed geomorphic processes at work in any
particular channel network, which in turn implies very general basic
causes.

The way data were obtained in Figures 1 and 2 was to measure every
segment of stream in Figure 1A. The distribution is somewhat more
coherent for the Strahler convention, as might be expected from the
relations described earlier. In Figure 1B and 1C the raw data are
plotted without regard to ordering; in Figure 2 all data are plotted in
terms of numbers and mean lengths in each order designated by either the
Horton or Strahler conventions. Figure 1C is a rough numerical test for
ordering based on an assumed form of numerical progression. In this case
it is for length intervals ordered proportional to mean length. This
basis appears to give more consistent regressions than do specific
geometric progressions.

The insensitivity of branching statistics to the nature of the system
is so general that there is a resemblance between the statistics of
stream numbers and fault numbers. Figures 1 and 2 illustrate regressions
of number frequencies versus length for the stream segments treated as
raw data measured as we did faults (Shaw and others, 1981) and also
ordered according to both the Horton and Strahler conventions. The
equations for the raw data (Figure 1B), combining regressions of x on y
and y on x, are:

logn=-1.03 - 1.00 log L (Horton)

log n = -1.63 - 1.39 log L (Strahler)
and for the ordered data, are:

logn=-0.85 -1.55 log L éHorton)

log n = -1.22 - 1.67 log L (Stranler)
where L is in centimeters at a map scale of 1:5,000,000; all data were
converted to this scale for comparison with faulting data for the
conterminous United States. Where actual lengths are used in tables or
figures they are given in kilometers.



The stream data are expressed as histograms and regressions of length
frequencies for comparative purposes. Ideally, we would also like to
count the orders for fault segments in the same way as stream segments,
but the equivalent continuity of branches and flow directions usually are
not obvious in the way they are for stream branching; an example
involving a simple fault system is described in detail later (Figures 6,
7, and 8?. So usually we are making an indirect comparison. Incidently,
this method of portraying the length data illustrates another property of
stream statistics in common with faulting statistics, and that is the
falloff in numbers at the shortest lengths and failure of the power law
at the longest lengths. This is an important feature of the data
relative to map scale and self similarity; we will return to it later
(see Shaw and others, 1981; Kagan and Knopoff, 1981).

Figure 3 gives analogous length distributions for faults in the
California Coast Region from Shaw and others (1981; map, Figure 1.-1 (A)
and (B); data, Figure 2.1.-1(2), Figure 2.2.1-3.(2)). Figure 4 shows an
outline map of faulting regions, and Table 1 identifies the regions by
name according to Howard and others (1978); see this map for patterns in
post-Miocene fault distributions across the United States.

The regression equation in Figure 3 for Region 2 faults (California
Coast) is:

logn =0.12 - 1.28 log L; Constant AL

(log n = 1.60 - 1.70 log L; DELX ~ X)
for L in cm at the scale 1,5,000,000. The equation in parentheses is
based on the method of length ordering in Figure 1C and described by Shaw
and others (1981). Regression equations for other sets of fault data
have slope coefficients ranging from about -1 to -2 with a mean of about
-1.7, f?r constant aL (Shaw and others, 1981, Tables 2.2.1-1 and
4.2.1-1).

The data set for the California Coast Region in Figure 3 resembles
the form of the Strahler distributions of stream lengths in Figure 1B and
1C. Analogous distributions for the thirty Faulting Regions of Table 1,
for the conterminous United States overall, and for the Los Angeles Area
are given in Shaw and others (1981; Figures 2.2.1-3 and 4.2.1-1). Figure
5 compares the "All U.S.* and "L.A." distributions.

Figure 6 shows a local fault pattern in central Nevada, and Figure 7
shows its non-ordered distributions of lengths in the same manner as the
previous data. Figure 8, however, treats the faults as an analog of the
stream pattern in Figure 1lA. In this case, although we can't truly
define the orders by the same criteria as streams, because the sequence
of fault movements (mechanical energy flow) is not known in the same
sense as stream flow, we have counted faults by imagining this pattern to
represent a stream drainage pattern with a northeasterly flow into a 4th
order trunk fault. That is, we assumed that an ordering sequence exists
for faulting networks because of their statistical similarity to stream
networks in terms of length frequency relations. In Figure 6 we guessed
which would be trunk streams of different orders and then we counted and
Ccompared the results of this assumption for the sets of faulting data and
comparable stream data (Hightower Creek); numbers and mean lengths are
given in Table 2. The comparison between stream and faulting data is



geometrically almost identical in Figure 8 and Table 2, perhaps because
the fault system is isolated, has narrowly defined movement ages, has
similar area to the Hightower Creek system, and is simple.



FAULTING ORDERS CALIBRATED FROM STREAM ORDERS

Table 3 gives data from Morisawa (1962) for the Allegheny River
drainage basin as tabulated by Strahler (1971; Table 34.3, p. 611).
Figure 9 shows a regression for length orders plotted in a manner
corresponding to the stream and fault data in Figure 8; the equation for
number versus length is:

log n=0.22-1.48 log L
for L given in cm at 1:5,000,000. We note that the geometric scale,
length ranges and slope of the regression equation for the Allegheny
network are comparable to data for regional faulting systems (Shaw and
others, 1981; Table 4.2.1.-1, p. 262).

Inspection of Tables 2 and 3 and Figures 8 and 9 reveals an
interesting relation between length ratio, bifurcation ratio and order.
The mean length ratio in Tables 2 and 3 is 3.0 and the mean bifurcation
ratios are about 5 for the stream and Reese River fault systems. The
absolute slope of the regression line in Figure 7 (N. Reese River faults)
is 1.48 (as it is also for the Allegheny River system) and the product
with the log of the length ratio is 0.706, giving as antilog the value of
the bifurcation ratio 5.08. That is, the product of the slope of the
plot of log length frequency times the log of the length ratio determines
the log of the bifurcation ratio in ordered sets of either streams or
faults. Conversely, given the bifurcation ratio and length ratio, the
slope of the plot of log length frequency is determined. Thus, if the
mean absolute slope for faulting regions in the United States is 1.70
(constant aL basis) and we assume that the length ratio is 3, then the
log of the bifurcation ratio is 0.82 and the mean bifurcation ratio is
about 6.5. This value is at the upper end of the ranges of bifurcation
ratios for stream networks (Shreve, 1966, Figure 3, p. 22). According to
Woldenberg (1971) bifurcation ratios in drainage networks generally are
mixed, with values ranging from 3 to 7; the largest expected bifurcation
ratio for stable drainage systems is 7, but larger ratios may exist in
unstable or transiently growing systems.

The above proportionalities are useful, but the systems of ordering
are relative. That is, we need to know or assume something about order
and one of the values Rp (bifurcation ratio), RL (length ratio) or S
(absolute slope of log length distribution) to determine the other
ratios. For fault systems, usually all we know are the length
frequencies and S, although we might attempt systems of ordering in
special cases as we did in Figure 6, or we might use the DELX~X relation
or mixed geometric progressions as a guide (Woldenberg, 1971).

Table 3 gives the data for faulting in the United States assuming a
scale similar to the Allegheny drainage system; the table compares
numbers, bifurcation, and length ratios between the two systems and gives
area ratios based on the Allegheny relations. Figure 10 gives plots for
the logarithms of lengths and numbers versus faulting order for "All
U.S." and "L.A." data on the basis of the correlations in Table 3.

Points are marked on the correlation line for (a) the longest measured
fault, (b) the fault length at n=1, (c) the fault length at the maximum
frequency, and (d) the shortest measured fault length; these points are
indicated for both the constant alL and DELX~X conventions.



According to this tentative correlation scheme, the Los Angeles area
is a 6th to 8th order faulting system, depending on constant al or DELX
conventions, with a cutoff at 3rd order faults reflecting the minimum
lengths that were portrayed on the original map scale at 1:250,000. The
overall system for the conterminous United States is 8th or 9th order
with a cutoff at 3rd or 4th order because of the cutoff on faults
portrayed at the map scale 1:5,000,000. This correlation is analogous to
measuring the Mississippi River drainage system at 1:5,000,000;
tributaries of the first few orders would pe poorly represented on this
scale.



CORRELATIONS OF FAULT RUPTURE LENGTHS AND EARTHQUAKE MAGNITUDES

Correlations of fault rupture length and earthquake magnitude are
discussed by many authors. For consistency, we refer only to the
regressions determined by Mark (1977) and Mark and Bonilla (1977) because
that method was the basis used in Shaw and others (1981). Figure 11

ives correlations for: (a) strike-slip faults of North America; (b) all

aults of North America regardless of type; and (c) all faults of the
world regardless of type. Regression equations represent both magnitude
on length, and length on magnitude; see discussion by Mark (1977).

Figure 12 identifies the possible relations between order, length,
and magnitude using the Allegheny River system as reference. The steeper
set of lines in Figure 12A was obtained by calculating magnitude from
length calibrated according to Allegheny stream orders in Figure 9. The
set of lines with slopes near unity was obtained by calculating length
from magnitude based on the same length-order calibration (Figure 9).

Figure 12B expresses the same relations in terms of length (log L)
versus order (fault order or magnitude, respectively), illustrating the
possible paths for calculating orders of magnitude either for earthquake
intensity or rupture length at the same number order. It is interesting
that the relations between order and earthquake magnitude are nearly 1:1
when rupture length is calculated according to Mark's regression
equations for length on magnitude, while regressions of magnitude on
length are steeper by a factor of about 2. This suggests that when
dealing with rupture lengths based on earthquake magnitude the ordering
progression for length freguencies is a geometric series with base
roughly 10 (approx. the bifurcation ratio) whereas the geometric
progression of number orders for magnitude calculated from rupture length
is roughly to the base 3. The latter is near the lower limit for stream
systems and for the N. Reese River Fault Scarps (Figures 8 and 9; Tables
2 and 3), suggesting that it applies to fault systems that are
susceptible to ordering according to the Horton-Strahler technique. The
former relation can be applied when the ordering classification has not
been deciphered from the map pattern, as in the bulk of data for faulting
regions in the United States (Shaw and others, 1981).

Figure 13 illustrates the situation where lengths are calculated
based only on earthquake counts without any map data for related
faulting, demonstrating the base 10 geometric progression (see numerical
data in Table 4).



EARTHQUAKE MAGNITUDE-ENERGY-MOMENT RELATIONS

Table 4 gives earthquake energy and seismic moment calculations for
some of the data described above, using three different methods of
calculating seismic moment. The data are used to introduce concepts of
mechanical energy flow analogous to stream flow. The column headed
“Event Moment for Constant Total Movement" identifies sets of data based
on the assumption of steady state flow; that is, the moment per event
times the number of events is constant for all events. Furthermore, it
is noticed that these values normalized in terms of the drainage basin
area ratios in Table 3 also may be roughly constant as shown in Table 5,
suggesting a parallel with the ordering relations of stream flow.

Figure 14 illustrates the calculations of seismic moment in terms of
the attenuation factor concept introduced by Evernden (1975). The
variety of slopes reflect the different bases for calculating moments,
although the general distributions appear to be consistent with the
conclusions discussed by Raleigh and Evernden (1981). They also observe
that the patterns of behavior from region to region are broadly
independent of geologic parameters. Generally speaking, the systems
based on earthquake counts (A and D in Table 4) diverge from the control
lines, whereas systems based on length frequencies (B and C) are
subparallel. Comparison for different regions of the United States is
possible based on data in Shaw and others (1981) and is beyond the scope
of this paper. There does, however, appear to be some sort of
discrepancy between length-magnitude relations and length-moment
relations which might be attributed to systematic variatons in the
length-magnitude correlations or to attenuation factors varying with
Tength and magnitude.
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CONCLUSIONS

We tentatively conclude that fault systems represent self similar
branching networks directly analogous to stream drainage systems. So far
as can be ascertained on the basis of available data, the correlations
are virtually identical in terms of progressions for numbers, lengths,
bifurcation and length ratios, and probably even source area (volume)
ratios. In turn this suggests that in mature systems, mechanical energy
flows at quasi-steady rates with distributions determined by the
geometric progressions of branching relations. This conclusion, in turn,
suggests some specific relations for maximum earthquake magnitudes,
recurrence frequencies, and growth rates of faults in the conterminous
United States. These relations are described in companion papers (see
Shaw ind others, 1981; Shaw and Gartner, 1981; Shaw and Gartner, in
press).

Optimally we can look forward to a time when it will be possible to
paraphrase seismically the hydrologic law of stream flow in a manner that
may resemble the following: "it is possible to make good estimates of
the mean annual frequencies and magnitudes of earthquakes at any point on
a trunk fault by merely measuring the source area lying above that point
i? terms of an established fault branching hierarchy and seismic moment
flux."

We note that a step in this direction is represented by the synthetic
earthquake catalogs generated by Kagan and Knopoff (1981). In fact, it
seems that their self similar model for an earthquake catalog is a short
term version of our model for fault branching relations. For example, in
our Table 4, the "constant moment" models imply that a large earthquake
is equivalent to a summation of moments growing from a number of smaller
ones (clusters) given by the self similar branching model. In the words
of Kagan and Knopoff (1981) the analogous statements for earthquakes are
as follows:

(p. 2853) By virtue of the time scale independence of power law
functions we may imagine that the source-time function of a single
earthquake, composed of a superposition of overlapping individual
events, is identical to that of the history of deformation of the
earth due to repeated earthquakes over years or even centuries under
a suitable change of time scale.

(page 2861) Our model implies that almost all earthquakes are
statistically and causally interdependent, a conclusion that
contradicts attempts to divide the full catalog of earthquakes,
either into sets of independent or main sequence events or into sets
of dependent events (aftershocks and foreshocks). If this picture
applies even for the strongest earthquakes, and our results in the
previous sections and elsewhere seem to confirm this, then all
earthquakes occur in superclusters with very long time spans which
may exceed the time spans of all the earthquake catalogs we have at
our disposal.

We suggest that data on systems of self similar faults represent
information on the nesting of clusters of fault movements and on the
“geologic catalog" of earthquake recurrence frequencies beyond the
historic earthquake catalogs at our disposal.
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Table 1 Alphabetical list of fault regions for the
conterminous United States (from Howard
and others, 1978).

Arizona Mountain Belt [01)
California Coast . [02]
Central Mississippi Valley (03]
Circum-Gulf [04 ]
Eastern Oregon-Western Idaho (05 ]
Four Corners (06 ]
Grand Canyon 07]
Gulf Coast 08 ]
Mexican Highland [09]
Mid-Continent [10]
Northeast (11]
Northern Rockies 12
Oregon-Washington Coast [13]
Pacific Interior (14 ]
Paradox [15]
Puget-Olympic [16]
Rio Grande [17]
Salton Trough (18]
Snake River Plain , [19]
Sonoran [20]
Southeast 21]
Southern Calif. Borderland [22]
Straits of Florida (23]
Transverse Ranges-Tehachapi [24]
Utah-Nevada 25
Walker Lane [26]
Wasatch-Tetons :27]
Western Mojave 28
Western Nevada .29]
Wyoming [30

Brackets give numbers used in Figure 4.



Table 2. Northern Reese River Valley Scarpsl/

Fault Number of Bifurcation Mean Length

order faults ratio length ratio
1 82 ' 0.45
(94) (0.76)
3.2 3.1
(4.5) (1.7)
2 26 1.4
(21) (1.3)
5.2 2.6
(4.2) (2.2)
3 5 3.6
(5) (2.9)
5.0 3.
(5.0) (3.8)
4 1 11
(1) (11)
average 4.5 2.9
4.6) . (2.6)

1/Measurements made in this report are based on
map patterns from Wallace (1979). Numbers in
parentheses are measurements of stream lengths in
the Hightower Creek drainage network: Order is
based on the Strahler convention; lengths of
streams were measured in this report from map
pattern in Shreve (1966) taken from Horton (1945).
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Table 5 Seismic moment flux for earthquakes of conterminous U.S. based
fault source area drainage basin area analogy.

on

(1) (2) (3) (4) (5)
Order Basin Event moment Event moment/ Earthquake source
area (constant total) Basin area Area for constant flux
(km2) (dyne cm) (erg/km) (km2)
(a) (b)
0 [.03] 1.0x1023 3.3x1024 0.04 1
(M=4)
2 ) 0.39 1.3x1024 3.3x1024 [0.4] 11
(M=5
4 15.8 1.6x1025 1.0x1024 4.8 130
(M=6)
( 6 ) 627 2.0x1026 0.32x1024 61 1700
M=7
( 8 ) [20,400] 2.5x1027 0.12x1024 760 [20,400]
M=8
(10 ) [661,000] 3.2x1028 0.05x1024 9700 270,000
M=9

(1) Order is estimated from Figure 12 for earthquake magnitudes calculated
from length. The values in parentheses are the magnitudes.

(2) Basin areas are from Table 3. Bracketed values are extrapolated
according to constant area ratio.

(3) Event moments are from Table 4, column (c).

(4) This is the flux of earthquake moment if the total moment for each

fault order is constant. Moment flux equals event moment divided by basin
area.

(5) This is the source area required to satisfy both constancy of total
moment and constancy of seismic moment flux; i.e., this is the model for
uniformly steady energy flow. Column (a) is normalized relative to Order 2

area and column (b) is normalized to Order 8 area shown in brackets. These

two area sets span the smallest and largest expected source areas for the
indicated orders and earthquake magnitudes.
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Figure 1. Procedure for determination of stream order in a drainage

network according to Horton (1945) and Strahler (1952); data for
Hightower Creek, redrawn from Shreve (1966).
A.  Numbers on the map indicate the highest order for a branching
subsystem; fingertip tributaries are order 1 (see text).
stream numbers represent the counts for segments in each order; the
dashed curve tests an assumption that the system might be 5th order.
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